Testicular development in Siberian hamsters depends on frequency and pattern of melatonin signals.

نویسندگان

  • A K Flynn
  • D A Freeman
  • I Zucker
  • B J Prendergast
چکیده

We investigated the impact of frequency and pattern of melatonin signals on reproductive development in Siberian hamsters. Juvenile males gestated in short day lengths and housed in constant illumination to suppress melatonin secretion were infused with melatonin for 5 h either once or twice per day for 20 days. Melatonin infusions at either frequency produced equivalent increases in testes and body weights that exceeded those of animals infused with saline but were indistinguishable from those of hamsters transferred to long day lengths. The reproductive system appears to be maximally stimulated by a single short melatonin signal each day. Other animals kept from birth in a short photoperiod were treated 6 h after onset of darkness with the beta-adrenergic receptor antagonist DL-propranolol to shorten melatonin secretion on the night of injection but not on subsequent nights. This permitted interpolation of short nightly melatonin signals of 4-5 h duration against a background of long melatonin signals of 10-12 h duration on other nights. Treatment regimes that maintained a 1:1 ratio of short to long melatonin signals for 8 wk stimulated reproductive development; a 1:2 signal ratio, in each of three different patterns, was uniformly ineffective. The number of successive short melatonin signals had little influence on the interval across which successive melatonin signals were summated to influence photoperiodic traits. The neuroendocrine axis appears more responsive to short melatonin signal frequency than pattern for development of the summer phenotype.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Melatonin chimeras alter reproductive development and photorefractoriness in Siberian hamsters.

Nightly melatonin (MEL) durations > 8 h provoke gonadal regression and decreases in body mass, whereas signals < 7 h stimulate gonadal and somatic growth in male Siberian hamsters. The authors sought to determine the minimum frequency of short MEL signals sufficient to induce the long-day phenotype in several photoperiodic traits. D,L-propranolol (hereafter propranolol) injections shortened MEL...

متن کامل

Perinatal influences of melatonin on testicular development and photoperiodic memory in Siberian hamsters.

We assessed the influence of perinatal melatonin on reproductive development and adult responsiveness to melatonin. Testicular growth in an intermediate day length (14 : 10 h light/dark cycle) was substantially reduced in Siberian hamsters gestated by pinealectomised compared to pineal-intact females; gonadal development was normalised in offspring of pinealectomised dams that were pinealectomi...

متن کامل

Different neural melatonin-target tissues are critical for encoding and retrieving day length information in Siberian hamsters.

Siberian hamsters exhibit several seasonal rhythms in physiology and behaviour, including reproduction, energy balance, body mass, and pelage colouration. Unambiguous long- and short day lengths stimulate and inhibit reproduction, respectively. Whether gonadal growth or regression occurs in an intermediate day length (e.g. 14 h L : 10 h D; 14L), depends on whether the antecedent day lengths wer...

متن کامل

Exogenous T3 mimics long day lengths in Siberian hamsters.

Siberian hamsters (Phodopus sungorus) exhibit seasonal cycles of reproduction driven by changes in day length. Day length is encoded endogenously by the duration of nocturnal melatonin (Mel) secretion from the pineal gland. Short-duration Mel signals stimulate reproduction and long-duration signals inhibit reproduction. The mechanism by which Mel signals are decoded at the level of neural targe...

متن کامل

Seasonal regulation of reproduction: altered role of melatonin under naturalistic conditions in hamsters.

The seasonal reproductive cycle of photoperiodic rodents is conceptualized as a series of discrete melatonin-dependent neuroendocrine transitions. Least understood is the springtime restoration of responsiveness to winter-like melatonin signals (breaking of refractoriness) that enables animals to once again respond appropriately to winter photoperiods the following year. This has been posited t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 279 4  شماره 

صفحات  -

تاریخ انتشار 2000